Abstract
The spatial optimization method between combinatorial optimization problems and GIS has many geographical applications. The p-center problem is a classic NP-hard location modeling problem, which has essential applications in many real-world scenarios, such as urban facility locations (ambulances, fire stations, pipelines maintenance centers, police stations, etc.). This study implements two methods to solve this problem: an exact algorithm and an approximate algorithm. Exact algorithms can get the optimal solution to the problem, but they are inefficient and time-consuming. The approximate algorithm can give the sub-optimal solution of the problem in polynomial time, which has high efficiency, but the accuracy of the solution is closely related to the initialization center point. We propose a new paradigm that combines a graph convolution network and greedy algorithm to solve the p-center problem through direct training and realize that the efficiency is faster than the exact algorithm. The accuracy is superior to the heuristic algorithm. We generate a large amount of p-center problems by the Erdos–Renyi graph, which can generate instances in many real problems. Experiments show that our method can compromise between time and accuracy and affect the solution of p-center problems.
Funder
the Strategic Priority Research Program of the Chinese Academy of Sciences
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献