Traffic State Estimation and Classification on Citywide Scale Using Speed Transition Matrices

Author:

Tišljarić LeoORCID,Carić TončiORCID,Abramović BornaORCID,Fratrović TomislavORCID

Abstract

The rising need for mobility, especially in large urban centers, consequently results in congestion, which leads to increased travel times and pollution. Advanced traffic management systems are being developed to take the advantage of increased mobility positive effects and minimize the negative ones. The first step dealing with congestion in urban areas is the detection of congested areas and the estimation of the congestion level. This paper presents a a method for a traffic state estimation on a citywide scale using the novel traffic data representation, named Speed Transition Matrix (STM). The proposed method uses traffic data to extract the STMs and to estimate the traffic state based on the Center Of Mass (COM) computation for every STM. The COM-based approach enables the simplification of the clustering process and provides increased interpretability of the resulting clusters. Using the proposed method, traffic data is analyzed, and the traffic state is estimated for the most relevant road segments in the City of Zagreb, which is the capital and the largest city in Croatia. The traffic state classification results are validated using the cross-validation method and the domain knowledge data with the resulting accuracy of 97% and 91%, respectively. The results indicate the possible application of the proposed method for the traffic state estimation on macro- and micro-locations in the city area. In the end, the application of STMs for traffic state estimation, traffic management, and anomaly detection is discussed.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference36 articles.

1. Advanced Applications for Urban Motorway Traffic Control

2. Sustainable Urban Mobility: European Policy, Practice and Solutions https://ec.europa.eu/transport/sites/transport/files/2017-sustainable-urban-mobility-european-policy-practice-and-solutions.pdf

3. Empirical assessment of urban traffic congestion

4. Travel Time Prediction in a Multimodal Freight Transport Relation Using Machine Learning Algorithms

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3