High-Level Path Planning for an Autonomous Sailboat Robot Using Q-Learning

Author:

Silva Junior Andouglas Gonçalves da Silva,Santos Davi Henrique dos,Negreiros Alvaro Pinto Fernandes de,Silva João Moreno Vilas Boas de Souza,Gonçalves Luiz Marcos GarciaORCID

Abstract

Path planning for sailboat robots is a challenging task particularly due to the kinematics and dynamics modelling of such kinds of wind propelled boats. The problem is divided into two layers. The first one is global were a general trajectory composed of waypoints is planned, which can be done automatically based on some variables such as weather conditions or defined by hand using some human–robot interface (a ground-station). In the second local layer, at execution time, the global route should be followed by making the sailboat proceed between each pair of consecutive waypoints. Our proposal in this paper is an algorithm for the global, path generation layer, which has been developed for the N-Boat (The Sailboat Robot project), in order to compute feasible sailing routes between a start and a target point while avoiding dangerous situations such as obstacles and borders. A reinforcement learning approach (Q-Learning) is used based on a reward matrix and a set of actions that changes according to wind directions to account for the dead zone, which is the region against the wind where the sailboat can not gain velocity. Our algorithm generates straight and zigzag paths accounting for wind direction. The path generated also guarantees the sailboat safety and robustness, enabling it to sail for long periods of time, depending only on the start and target points defined for this global planning. The result is the development of a complete path planner algorithm that, together with the local planner solved in previous work, can be used to allow the final developments of an N-Boat making it a fully autonomous sailboat.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. General System Architecture and COTS Prototyping of an AIoT-Enabled Sailboat for Autonomous Aquatic Ecosystem Monitoring;IEEE Internet of Things Journal;2024-02-01

2. Investigating the Performance and Reliability, of the Q-Learning Algorithm in Various Unknown Environments;2023 11th RSI International Conference on Robotics and Mechatronics (ICRoM);2023-12-19

3. Small Unmanned Surface Vessels—A Review and Critical Analysis of Relations to Safety and Safety Assurance of Larger Autonomous Ships;Journal of Marine Science and Engineering;2023-12-18

4. On the Use of Autonomous Sailboats as Learning Tools in Computer Science and Engineering Undergraduate Courses;2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE);2023-10-09

5. Semantic Segmentation and Regions of Interest for Obstacles Detection and Avoidance in Autonomous Surface Vessels;2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE);2023-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3