Comparison between Machine-Learning-Based Turbidity Models Developed for Different Lake Zones in a Large Shallow Lake

Author:

Hu Runtao,Xu Wangchen,Yan Wenming,Wu Tingfeng,He Xiangyu,Cheng Nannan

Abstract

Machine learning has been used to mine the massive data collected by automatic environmental monitoring systems and predict the changes in the environmental factors in lakes. However, further study is needed to assess the feasibility of the development of a universal machine-learning-based turbidity model for a large shallow lake with considerable spatial heterogeneity in environmental factors. In this study, we collected and examined sediment and water quality data from Lake Taihu, China. Three monitoring stations were established in three lake zones to obtain continuous time series data of the water quality and meteorological variables. We used these data to develop three turbidity models based on long short-term memory (LSTM). The three zones differed in terms of environmental factors related to turbidity: in West Taihu, the Lake Center, and the mouth of Gonghu Bay, the critical shear stress of bed sediments was 0.029, 0.055, and 0.032 N m−2, and the chlorophyll-a concentration was 23.27, 14.62, 30.80 μg L−1, respectively. The LSTM-based turbidity model developed for any zone could predict the turbidity in the other two zones. For the model developed for West Taihu, its performance to predict the turbidity in the local zone (i.e., West Taihu) was inferior to that for the other zones; the reverse applied to the models developed for the Lake Center and Gonghu Bay. This can be attributed to the complex hydrodynamics in West Taihu, which weakens the learning of LSTM from the time series data. This study explores the feasibility of the development of a universal LSTM-based turbidity model for Lake Taihu and promotes the application of machine learning algorithms to large shallow lakes.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Water Resources Department of Jiangsu Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference41 articles.

1. Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks;Environ. Model. Softw.,2002

2. Wind induced sediment resuspension: A lake-wide model;Bailey;Ecol. Model.,1997

3. Bartram, J. (1996). Water Quality Monitoring: A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes, CRC Press.

4. Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model;Barzegar;Stoch. Environ. Res. Risk Assess.,2020

5. Gradient amplification: An efficient way to train deep neural networks;Basodi;Big Data Min. Anal.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3