Response of Industrial Warm Drainage to Tide Revealed by Airborne and Sea Surface Observations

Author:

Zhang DonghuiORCID,Zhu ZhenchangORCID,Zhang LifuORCID,Sun Xuejian,Zhang Zhijie,Zhang WanchangORCID,Li XushengORCID,Zhu Qin

Abstract

Maintaining the balance between power station operation and environmental carrying capacity in the process of cooling water discharge into coastal waters is an essential issue to be considered. Earth observations with airborne and sea surface sensors can efficiently estimate distribution characteristics of extensive sea surface temperature compared with traditional numerical and physical simulations. Data acquisition timing windows for those sensors are designed according to tidal data. The airborne thermal infrared data (Thermal Airborne Spectrographic Imager, TASI) is preprocessed by algorithms of atmospheric correction, geometric correction, strip brightness gradient removal, and noise reduction, and then the seawater temperature is inversed in association with sea surface synchronous temperature measurement data (Sea-Bird Electronics, SBE). Verification analyses suggested a satisfied accuracy of less than about 0.2 °C error between the predicted and the measured values in general. Multiple factors influence seawater temperature, i.e., meteorology, ocean current, runoff, water depth, seawater convection, and eddy current; tidal activity is not the only one. Environmental background temperature in different seasons is the governing factor affecting the diffusion effect of seawater temperature drainage according to analyses of the covariances and correlation coefficients of eight tidal states. The present study presents an efficient and quick seawater temperature monitoring technique owing to industrial warm drainage to sea by means of a complete set of seawater temperature inversion algorithms with multi-source thermal infrared hyperspectral data.

Funder

National Natural Science Foundation of China

the Innovation Team of XPCC’s Key Area

Guangdong Yuehai Water Investment Co., Ltd. Multi Parameter Integrated Water Pollution Online Monitoring Technology and Demonstration Application Unveiling Project

Forestry Innovation program in Guangdong Province

Major Projects of High-Resolution Earth Observation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3