Change and relationship between growing season metrics and net primary productivity in forestland and grassland in China

Author:

Cui Linli,Shi Jun,Xiao Fengjin

Abstract

Abstract Background Vegetation phenology can characterize ecosystem functions and plays a key role in the dynamics of plant productivity. Here we investigated the changes in growing season metrics (start of growing season, SOS; end of growing season, EOS; length of growing season, LOS) and their relationships with net primary productivity (NPP) in forestland and grassland in China during 1981–2016. Results SOS advanced, EOS delayed, LOS prolonged and NPP increased significantly in 23.7%, 21.0%, 40.5% and 19.9% of the study areas, with an average rate of 3.9 days decade−1, 3.3 days·decade−1, 6.7 days·decade−1 and 10.7 gC m−2·decade−1, respectively. The changes in growing season metrics were obvious in Northwest China (NWC) and North China (NC), but the least in Northeast China (NEC). NPP was negatively correlated with SOS and positively correlated with EOS and LOS in 22.0%, 16.3% and 22.8% of the study areas, respectively, and the correlation between NPP and growing season metrics was strong in NWC, NC and Southwest China (SWC), but weak in NEC and South China (SC). Conclusion The advanced SOS, delayed EOS and prolonged LOS all contribute to the increased NPP in forestland and grassland in China, especially in NWC, NC and SWC. This study also highlights the need to further study the response of NPP to growing season changes in different regions and under the influence of multiple factors.

Funder

Major Program of the National Natural Science Foundation of China

Natural Science Foundation of Shanghai

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Management, Monitoring, Policy and Law,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3