Mapping Tunneling-Induced Uneven Ground Subsidence Using Sentinel-1 SAR Interferometry: A Twin-Tunnel Case Study of Downtown Los Angeles, USA

Author:

Liu LinanORCID,Zhou WendyORCID,Gutierrez MarteORCID

Abstract

Synthetic Aperture Radar (SAR) interferometry is a formidable technique to monitor surface deformation with a millimeter detection resolution. This study applies the Persistent Scatter-Interferometric Synthetic Aperture Radar (PSInSARTM) technique to measure ground subsidence related to a twin-tunnel excavation in downtown Los Angeles, USA. The PSInSARTM technique is suitable for urban settings because urban areas have strong reflectors. The twin tunnels in downtown Los Angeles were excavated beneath a densely urbanized area with variable overburden depths. In practice, tunneling-induced ground settlement is dominantly vertical. The vertical deformation rate in this study is derived by combining Line of Sight (LOS) deformation velocities obtained from SAR images from both ascending and descending satellite orbits. Local and uneven settlements up to approximately 12 mm/year along the tunnel alignment are observed within the allowable threshold. No severe damages to aboveground structures were reported. Furthermore, ground movements mapped one year before tunnel construction indicate that no concentrated ground settlements pre-existed. A Machine Learning (ML)-based permutation feature importance method is used for a parametric study to identify dominant factors associated with the twin-tunneling induced uneven ground subsidence. Six parameters are selected to conduct the parametric study, including overburden thickness, i.e., the thickness of artificial fill and alluvium soils above the tunnel springline, the distance between the two tunnel centerlines, the depth to the tunnel springline, building height, the distance to the tunnel, and groundwater level. Results of the parametric analysis indicate that overburden thickness, i.e., the thickness of artificial fill and alluvium soils above the tunnel springline, is the dominant contributing factor, followed by the distance between tunnel centerlines, depth to the tunnel springline, and building height. Two parameters, the distance to the tunnel, and the groundwater level, play lesser essential roles than others. In addition, the geological profile provides comprehension of unevenly distributed ground settlements, which are geologically sensitive and more concentrated in areas with thick artificial fill and alluvium soils, low tunnel depth, and high groundwater levels.

Funder

University Transportation Center for Underground Transportation Infrastructure

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

1. Submillimeter accuracy of InSAR Time Series: Experimental validation;Ferretti;IEEE Trans. Geosci. Remote Sens.,2007

2. Wnuk, K., Zhou, W., and Gutierrez, M. (2021). Mapping urban excavation induced deformation in 3D via multiplatform InSAR time-series. Remote Sens., 13.

3. Monitoring of construction-induced urban ground deformations using Sentinel-1 PSInSAR: The case study of tunneling in Dangjin, Korea;Ramirez;Int. J. Appl. Earth Obs. Geoinf.,2022

4. Satellite radar interferometry: Potential and limitations for structural assessment and monitoring;Talledo;Build. Eng.,2022

5. Integrated InSAR monitoring and structural assessment of tunneling-induced building deformations;Macchiarulo;Struct. Control Health Monit.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3