Mapping Urban Excavation Induced Deformation in 3D via Multiplatform InSAR Time-Series

Author:

Wnuk Kendall,Zhou WendyORCID,Gutierrez Marte

Abstract

Excavation of a subway station and rail crossover cavern in downtown Los Angeles, California, USA, induced over 1.8 cm of surface settlement between June 2018 and February 2019 as measured by a ground-based monitoring system. Point measurements of surface deformation above the excavation were extracted by applying Interferometric Synthetic Aperture Radar (InSAR) time-series analyses to data from multiple sensors with different wavelengths. These sensors include C-band Sentinel-1, X-band COSMO-SkyMed, and L-band Uninhabited Aerial Vehicle SAR (UAVSAR). The InSAR time-series point measurements were interpolated to continuous distribution surfaces, weighted by distance, and entered into the Minimum-Acceleration (MinA) algorithm to calculate 3D displacement values. This dataset, composed of satellite and airborne SAR data from X, C, and L band sensors, revealed previously unidentified deformation surrounding the 2nd Street and Broadway Subway Station and the adjacent rail crossover cavern, with maximum vertical and horizontal deformations reaching 2.5 cm and 1.7 cm, respectively. In addition, the analysis shows that airborne SAR data with alternative viewing geometries to traditional polar-orbiting SAR satellites can be used to constrain horizontal displacements in the North-South direction while maintaining agreement with ground-based data.

Funder

United States Department of Transportation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3