Quantifying the Reliability and Uncertainty of Satellite, Reanalysis, and Merged Precipitation Products in Hydrological Simulations over the Topographically Diverse Basin in Southwest China

Author:

Lei Huajin,Zhao HongyuORCID,Ao Tianqi,Hu Wanpin

Abstract

With the continuous emergence of remote sensing technologies and atmospheric models, multi-source precipitation products (MSPs) are increasingly applied in hydrometeorological research, especially in ungauged or data-scarce regions. This study comprehensively evaluates the reliability of MSPs and quantifies the uncertainty of sources in streamflow simulation. Firstly, the performance of seven state-of-the-art MSPs is assessed using rain gauges and the Block-wise use of the TOPMODEL (BTOP) hydrological model under two calibration schemes over Jialing River Basin, China. Then, a variance decomposition approach (Analysis of variance, ANOVA) is employed to quantify the uncertainty contribution of precipitation products, model parameters, and their interaction in streamflow simulation. The MSPs include five satellite-based (GSMaP, IMERG, PERCDR, CHIRPS, CMORPH), one reanalysis (ERA5L), and one ensembled product (PXGB2). The results of precipitation evaluation show that the MSPs have temporal and spatial variability and PXGB2 has the best performance. The hydrologic utility of MSPs is different under different calibration methods. When using gauge-based calibration parameters, the PXGB2-based simulation performs best, whereas CHIRPS, PERCDR, and ERA5L show relatively poor performance. In comparison, the model recalibrated by individual MSPs significantly improves the simulation accuracy of most MSPs, with GSMaP having the best performance. The ANOVA results reveal that the contribution of precipitation products to the streamflow uncertainty is larger than model parameters and their interaction. The impact of interaction suggests that a better simulation attributes to an optimal combination of precipitation products and model parameters rather than solely relying on the best MSPs. These new findings are valuable for improving the suitability of MSPs in hydrologic applications.

Funder

Science and Technology Department of Sichuan Province

Key R&D projects of the Science and Technology department in Sichuan Province

Science and Technology Department of Tibet

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3