The Spatial Correlation and Anisotropy of β-(AlxGa1−x)2O3 Single Crystal

Author:

Li Liuyan12,Wan Lingyu12ORCID,Xia Changtai3,Sai Qinglin3,Talwar Devki N.4ORCID,Feng Zhe Chuan5,Liu Haoyue6,Jiang Jiang12,Li Ping12

Affiliation:

1. Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, Carbon Peak and Neutrality Science and Technology Development Institute, School of Physical Science & Technology, Guangxi University, Nanning 530004, China

2. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China

3. Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

4. Department of Physics, University of North Florida, Jacksonville, FL 32224, USA

5. Department of Electrical & Computer Engineering, Southern Polytechnic College of Engineering and Engineering Technology, Kennesaw State University Marietta, Marietta, GA 30060, USA

6. Hangzhou Institute of Optics and Fine Mechanics, Hangzhou 311421, China

Abstract

The long-range crystallographic order and anisotropy in β-(AlxGa1−x)2O3 (x = 0.0, 0.06, 0.11, 0.17, 0.26) crystals, prepared by optical floating zone method with different Al composition, is systematically studied by spatial correlation model and using an angle-resolved polarized Raman spectroscopy. Alloying with aluminum is seen as causing Raman peaks to blue shift while their full widths at half maxima broadened. As x increased, the correlation length (CL) of the Raman modes decreased. By changing x, the CL is more strongly affected for low-frequency phonons than the modes in the high-frequency region. For each Raman mode, the CL is decreased by increasing temperature. The results of angle-resolved polarized Raman spectroscopy have revealed that the intensities of β-(AlxGa1−x)2O3 peaks are highly polarization dependent, with significant effects on the anisotropy with alloying. As the Al composition increased, the anisotropy of Raman tensor elements was enhanced for the two strongest phonon modes in the low-frequency range, while the anisotropy of the sharpest Raman phonon modes in the high-frequency region decreased. Our comprehensive study has provided meaningful results for comprehending the long-range orderliness and anisotropy in technologically important β-(AlxGa1−x)2O3 crystals.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

General Materials Science

Reference44 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3