Seismic Behavior Analysis of Recycled Aggregate Concrete-Filled Square Steel Tube Frames

Author:

Zhang Xianggang12,Liu Xuyan2,Fan Yuhui2,Yang Junna2

Affiliation:

1. School of Intelligent Construction, Wuchang University of Technology, Wuhan 430223, China

2. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China

Abstract

In this study, the seismic behavior of a recycled aggregate concrete-filled square steel tube (S-RACFST) frame under different design conditions was investigated. Based on previous studies, a finite element model for the seismic behavior of the S-RACFST frame was developed. Moreover, the axial compression ratio, beam–column line stiffness ratio, and yield bending moment ratio of the beam–column were regarded as the variation parameters. It was through these parameters that the seismic behavior of eight S-RACFST frame finite element specimens was discussed. The seismic behavior indexes, such as the hysteretic curve, ductility coefficient, energy dissipation coefficient, and stiffness degradation were obtained—which, in turn, revealed the influence law and the degree of the design parameters regarding seismic behavior. Moreover, the sensitivity of the various parameters with respect to the seismic behavior of the S-RACFST frame was evaluated via grey correlation analysis. The results show that the hysteretic curves of the specimens were fusiform and full with respect to the different parameters. Firstly, with the axial compression ratio increasing from 0.2 to 0.4, the ductility coefficient increased by 28.5%. In addition, the equivalent viscous damping coefficient of the specimen with the axial compression ratio of 0.4 was 17.9% higher than that of the specimen with the axial compression ratio of 0.2, which was 11.5% as well as that with an axial compression ratio of 0.3. Second, when the line stiffness ratio rises from 0.31 to 0.41, the specimens’ bearing capacity and displacement ductility coefficient both get better. However, the displacement ductility coefficient gradually decreases when the line stiffness ratio is greater than 0.41. As a result, an optimal line stiffness ratio (0.41) thus exhibits good energy dissipation capacity. Thirdly, with the increase in the yield bending moment ratio from 0.10 to 0.31, the bearing capacity of the specimens improves. In addition, the positive and negative peak loads increased by 16.4% and 22.8%, respectively. Moreover, the ductility coefficients were all close to three, thus demonstrating good seismic behavior. The stiffness curve of the specimen with a large yield bending moment ratio with respect to the beam–column, is higher than those that possess a small beam–column yield moment ratio. In addition, the yield bending moment ratio of the beam–column possesses a significant influence on the seismic behavior of the S-RACFST frame. Furthermore, the yield bending moment ratio of the beam–column should be considered first in order to ensure the seismic behavior of the S-RACFST frame.

Funder

the Key R&D and Promotion Projects in Henan Province

Publisher

MDPI AG

Subject

General Materials Science

Reference29 articles.

1. Experimental investigation of sound transmission loss in concrete containing recycled rubber crumbs;Chalangaran;Adv. Concr. Constr.,2020

2. Nano Silica and Metakaolin Effects on the Behavior of Concrete Containing Rubber Crumbs;Chalangaran;CivilEng,2020

3. Temperature and humidity effects on behavior of grouts;Farzampour;Adv. Concr. Constr.,2017

4. Prediction of ultimate condition of FRP-confined recycled aggregate concrete using a hybrid boosting model enriched with tabular generative adversarial networks;Zhao;Thin Walled Struct.,2023

5. Investigation on UPVC confined RC columns with Recycled Aggregate Concrete using C&D waste;Bandyopadhyay;Structures,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3