Satin bowerbird optimizer-neural network for approximating the capacity of CFST columns under compression

Author:

Liu Yuzhen,Liang Yan

Abstract

AbstractConcrete-filled steel tube columns (CFSTCs) are important elements in the construction sector and predictive analysis of their behavior is essential. Recent works have revealed the potential of metaheuristic-assisted approximators for this purpose. The main idea of this paper, therefore, is to introduce a novel integrative model for appraising the axial compression capacity (Pu) of CFSTCs. The proposed model represents an artificial neural network (ANN) supervised by satin bowerbird optimizer (SBO). In other words, this metaheuristic algorithm trains the ANN optimally to find the best contribution of input parameters to the Pu. In this sense, column length and the compressive strength of concrete, as well as the characteristics of the steel tube (i.e., diameter, thickness, yield stress, and ultimate stress), are considered input data. The prediction results are compared to five ANNs supervised by backtracking search algorithm (BSA), earthworm optimization algorithm (EWA), social spider algorithm (SOSA), salp swarm algorithm (SSA), and wind-driven optimization. Evaluating various accuracy indicators showed that the proposed model surpassed all of them in both learning and reproducing the Pu pattern. The obtained values of mean absolute percentage error of the SBO-ANN was 2.3082% versus 4.3821%, 17.4724%, 15.7898%, 4.2317%, and 3.6884% for the BSA-ANN, EWA-ANN, SOSA-ANN, SSA-ANN and WDA-ANN, respectively. The higher accuracy of the SBO-ANN against several hybrid models from earlier literature was also deduced. Moreover, the outcomes of principal component analysis on the dataset showed that the yield stress, diameter, and ultimate stress of the steel tube are the three most important factors in Pu prediction. A predictive formula is finally derived from the optimized SBO-ANN by extracting and organizing the weights and biases of the ANN. Owing to the accurate estimation shown by this model, the derived formula can reliably predict the Pu of concrete-filled steel tube columns.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3