Effect of Process Parameters on the Formability, Microstructure, and Mechanical Properties of Laser-Arc Hybrid Welding of Q355B Steel

Author:

Zhang Liping12,Peng Genchen2,Chi Jinze3,Bi Jiang3,Yuan Xiaoming1,Li Wen12,Zhang Lijie1

Affiliation:

1. Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, China

2. Jiangsu XCMG Construction Machinery Research Institution Ltd., Xuzhou 221000, China

3. Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, China

Abstract

Thick plate steel structure is widely used in the construction machinery, pressure vessels, ships, and other manufacturing fields. To obtain an acceptable welding quality and efficiency, thick plate steel is always joined by laser-arc hybrid welding technology. In this paper, Q355B steel with a thickness of 20 mm was taken as the research object, and the process of narrow-groove laser-arc hybrid welding was studied. The results showed that the laser-arc hybrid welding method could realize one-backing and two-filling welding with the single-groove angles of 8–12°. At different plate gaps of 0.5 mm, 1.0 mm, and 1.5 mm, the shapes of weld seams were satisfied with no undercut, blowhole, or other defects. The average tensile strength of welded joints was 486~493 MPa, and the fracture position was in the base metal area. Due to the high cooling rate, a large amount of lath martensite formed in heat-affected zone (HAZ) and this zone exhibited higher hardness values. The impact roughness of the welded joint was almost 66–74 J, with different groove angles.

Funder

Natural Science Foundation of Jiangsu Province

Hebei Natural Science Foundation

Xuzhou Provincial Guidance Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3