A Super-Resolution Network for High-Resolution Reconstruction of Landslide Main Bodies in Remote Sensing Imagery Using Coordinated Attention Mechanisms and Deep Residual Blocks

Author:

Zhang Huajun12,Ye Chengming12,Zhou Yuzhan12,Tang Rong12,Wei Ruilong12

Affiliation:

1. Key Laboratory of Earth Exploration and Information Technology of Ministry of Education, Chengdu University of Technology, Chengdu 610059, China

2. College of Geophysics, Chengdu University of Technology, Chengdu 610059, China

Abstract

The lack of high-resolution training sets for intelligent landslide recognition using high-resolution remote sensing images is a major challenge. To address this issue, this paper proposes a method for reconstructing low-resolution landslide remote sensing images based on a Super-Resolution Generative Adversarial Network (SRGAN) to fully utilize low-resolution images in the process of constructing high-resolution landslide training sets. First, this paper introduces a novel Enhanced Depth Residual Block called EDCA, which delivers stable performance compared to other models while only slightly increasing model parameters. Secondly, it incorporates coordinated attention and redesigns the feature extraction module of the network, thus boosting the learning ability of image features and the expression of high-frequency information. Finally, a residual stacking-based landslide remote sensing image reconstruction strategy was proposed using EDCA residual blocks. This strategy employs residual learning to enhance the reconstruction performance of landslide images and introduces LPIPS for evaluating the test images. The experiment was conducted using landslide data collected by drones in the field. The results show that compared with traditional interpolation algorithms and classic deep learning reconstruction algorithms, this approach performs better in terms of SSIM, PSNR, and LPIPS. Moreover, the network can effectively handle complex features in landslide scenes, which is beneficial for subsequent target recognition and disaster monitoring.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

the Second Tibetan Plateau Scientific Expedition and Research Program

Key Research and Development Program of Sichuan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3