Landslide Susceptibility Prediction Using Particle-Swarm-Optimized Multilayer Perceptron: Comparisons with Multilayer-Perceptron-Only, BP Neural Network, and Information Value Models

Author:

Li Deying,Huang Faming,Yan Liangxuan,Cao Zhongshan,Chen Jiawu,Ye Zhou

Abstract

Landslides are one type of serious geological hazard which cause immense losses of local life and property. Landslide susceptibility prediction (LSP) can be used to determine the spatial probability of landslide occurrence in a certain area. It is important to implement LSP for landslide hazard prevention and reduction. This study developed a particle-swarm-optimized multilayer perceptron (PSO-MLP) model for LSP implementation to overcome the drawbacks of the conventional gradient descent algorithm and to determine the optimal structural parameters of MLP. Shicheng County in Jiangxi Province of China was used as the study area. In total, 369 landslides, randomly selected non-landslides, and 14 landslide-related predisposing factors were used to train and test the present PSO-MLP model and three other comparative models (an MLP-only model with the gradient descent algorithm, a back-propagation neural network (BPNN), and an information value (IV) model). The results showed that the PSO-MLP model had the most accurate prediction performance (area under the receiver operating characteristic curve (AUC) of 0.822 and frequency ratio (FR) accuracy of 0.856) compared with the MLP-only (0.791 and 0.829), BPNN (0.800 and 0.840), and IV (0.788 and 0.824) models. It can be concluded that the proposed PSO-MLP model addresses the drawbacks of the MLP-only model well and performs better than conventional artificial neural networks (ANNs) and statistical models. The spatial probability distribution law of landslide occurrence in Shicheng County was well revealed by the landslide susceptibility map produced using the PSO-MLP model. Furthermore, the present PSO-MLP model may have higher prediction and classification performances in some other fields compared with conventional ANNs and statistical models.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3