Publisher
Springer Science and Business Media LLC
Reference153 articles.
1. Achu AL, Thomas J, Aju CD et al (2023) Performance evaluation of machine learning and statistical techniques for modelling landslide susceptibility with limited field data. Earth Sci Informatics 16:1025–1039
2. Aditian A, Kubota T, Shinohara Y (2018) Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 318:101–111. https://doi.org/10.1016/J.GEOMORPH.2018.06.006
3. Agterberg FP, Bonharn-Carter GF (1994) Weights of evidence modeling and weighted logistic regression for mineral potential mapping. Comput Geol 25:13–32
4. Albano R, Samela C, Cr\uaciun I, et al (2020) Large scale flood risk mapping in data scarce environments: an application for Romania. Water 12:1834
5. Andrieux J (1971) La structure du rif central. étude des relations entre la tectonique de compression et les nappes de glissement dans un tronçon de la chaine alpine. Notes mémoires du Serv géologique