A New Direction in Microfluidics: Printed Porous Materials

Author:

Evard HannoORCID,Priks Hans,Saar IndrekORCID,Aavola HeiliORCID,Tamm TarmoORCID,Leito IvoORCID

Abstract

In this work, the feasibility of a novel direction for microfluidics is studied by demonstrating a set of new methods to fabricate microfluidic systems. Similarly to microfluidic paper-based analytical devices, porous materials are being used. However, alternative porous materials and different printing methods are used here to give the material the necessary pattern to act as a microfluidic system. In this work, microfluidic systems were produced by the following three separate methods: (1) by curing a porous monolithic polymer sheet into a necessary pattern with photolithography, (2) by screen printing silica gel particles with gypsum, and (3) by dispensing silica gel particles with polyvinyl acetate binder using a modified 3D printer. Different parameters of the printed chips were determined (strength of the printed material, printing accuracy, printed material height, wetting characteristics, repeatability) to evaluate whether the printed chips were suitable for use in microfluidics. All three approaches were found to be suitable, and therefore the novel approach to microfluidics was successfully demonstrated.

Funder

Eesti Teadusagentuur

Estonian Research Infrastructure Roadmap

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3