Affiliation:
1. Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
Abstract
In this work, a screen-printing method was developed to create porous particle-based materials as layers with specifically designed shape to produce microfluidics systems. Among several tested binding agents, xanthan gum was found to be an excellent choice for a printing mixture thickener as well as a durable binder for the resulting material. In addition to demonstrating control over the shape of the printed microfluidics chips, control over material thickness, wetting characteristics and general method accuracy were also investigated. The applicability of the introduced method was further demonstrated with a development of an exemplary microfluidics chip for quantitative detection of Fe (III), Ni (II), Cu (II), Cd (II), and Pb (II) from a mixed sample at millimolar levels. The novel approaches demonstrated in this article offer new perspective into creating multiplexed on-site chemical analysis tests.
Funder
Estonian Research Council
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献