Hysteresis in As-Synthesized MoS2 Transistors: Origin and Sensing Perspectives

Author:

Marquez CarlosORCID,Salazar NorbertoORCID,Gity FarzanORCID,Galdon Jose C.ORCID,Navarro CarlosORCID,Sampedro CarlosORCID,Hurley Paul K.ORCID,Chang Edward YiORCID,Gamiz FranciscoORCID

Abstract

Two-dimensional materials, including molybdenum disulfide (MoS2), present promising sensing and detecting capabilities thanks to their extreme sensitivity to changes in the environment. Their reduced thickness also facilitates the electrostatic control of the channel and opens the door to flexible electronic applications. However, these materials still exhibit integration difficulties with complementary-MOS standardized processes and methods. The device reliability is compromised by gate insulator selection and the quality of the metal/semiconductor and semiconductor/insulator interfaces. Despite some improvements regarding mobility, hysteresis and Schottky barriers having been reported thanks to metal engineering, vertically stacked heterostructures with compatible thin-layers (such as hexagonal boron nitride or device encapsulation) variability is still an important constraint to sensor performance. In this work, we fabricated and extensively characterized the reliability of as-synthesized back-gated MoS2 transistors. Under atmospheric and room-temperature conditions, these devices present a wide electrical hysteresis (up to 5 volts) in their transfer characteristics. However, their performance is highly influenced by the temperature, light and pressure conditions. The singular signature in the time response of the devices points to adsorbates and contaminants inducing mobile charges and trapping/detrapping carrier phenomena as the mechanisms responsible for time-dependent current degradation. Far from being only a reliability issue, we demonstrated a method to exploit this device response to perform light, temperature and/or pressure sensors in as-synthesized devices. Two orders of magnitude drain current level differences were demonstrated by comparing device operation under light and dark conditions while a factor up to 105 is observed at vacuum versus atmospheric pressure environments.

Funder

H2020 Marie Skłodowska-Curie Actions

Ministerio de Ciencia e Innovación

European Commission

Science Foundation Ireland

Universidad de Granada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3