Experimental Study of Geometric Shape and Size of Sill Effects on the Hydraulic Performance of Sluice Gates

Author:

Daneshfaraz Rasoul,Norouzi RezaORCID,Ebadzadeh ParisaORCID,Di Francesco SilviaORCID,Abraham John PatrickORCID

Abstract

The present research was conducted to investigate the effect of sill geometry and sill width on the discharge coefficient and hydraulic jump characteristics. For this purpose, sills with semi-cylindrical, cylindrical, pyramidal, and rectangular cube geometries with widths of 0.075, 0.10, 0.15, and 0.2 m were installed under a sluice gate. Results showed that increasing the sill width increased the sluice gate discharge coefficient compared to the no-sill mode. The results of placing a sill with different geometric shapes under a sluice gate indicate that using a semi-cylindrical sill increases the discharge coefficient. The ranked order of other sills, from the largest to smallest discharge coefficient, is: cylindrical, pyramidal, and rectangular cubic sills, respectively. The results show that the use of a sill increases the energy dissipation. Examining sills of different widths indicates that with increasing width, the increase in velocity and consequent decrease in the depth of the hydraulic jump causes an increase in energy loss. When employing sills of maximum width (b = 0.20 m) for pyramidal, semi-cylindrical, cylindrical, and rectangular shapes, the energy loss increased by 125, 119, 116, and 125% in section A, respectively. The semi-cylindrical sill is most effective in increasing the discharge coefficient, while the pyramidal sill is most effective for increasing energy dissipation.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference33 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3