Influence of Sill on the Hydraulic Regime in Sluice Gates: An Experimental and Numerical Analysis

Author:

Daneshfaraz RasoulORCID,Norouzi RezaORCID,Abbaszadeh HamidrezaORCID,Kuriqi AlbanORCID,Di Francesco SilviaORCID

Abstract

This study investigates experimentally and numerically the effects of sills with different geometric specifications at various positions on the hydraulic characteristics of flow through sluice gates. The simulation results showed that the RNG turbulence model’s statistical indicators yield high accuracy compared to the k-ε, k-ω, and LES turbulence models. The discharge coefficient (Cd) has an inverse relationship with gate opening. Regarding sill state, the discharge coefficient is higher than no-sill state. In the case of non-suppressed sills, the Cd decreases compared to the smaller openings as the opening of the gate changes. The results showed that the Cd with a sill in the tangent position upstream of the gate is higher than the downstream tangent and below situations. Increasing the sill length leads to an increase in flow shear stress and consequently a decrease in Cd. The Cd of gates with different sill thicknesses is always higher than the no-sill state, but due to the constant ratio of the fluid depth above the sill to the gate opening, the Cd increases to a certain extent and then decreases with increasing sill thickness.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference27 articles.

1. Submerged flow below sluice gate with sill;Negm;Proceedings of the International Conference on Hydro-Science and Engineering Hydro-Science and Engineering ICHE98,1998

2. Discussion on “Diffusion of submerged jets” by Albertson, M.L. et al;Henry;Trans. Am. Soc. Civ. Eng.,1950

3. Flow Equation for the Sluice Gate

4. Free Flow Immediately Below Sluice Gates

5. Sluice‐Gate Discharge Equations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3