Comparison of Machine Learning Methods for Estimating Leaf Area Index and Aboveground Biomass of Cinnamomum camphora Based on UAV Multispectral Remote Sensing Data

Author:

Wang Qian1,Lu Xianghui1,Zhang Haina1,Yang Baocheng1,Gong Rongxin1,Zhang Jie1,Jin Zhinong1,Xie Rongxiu1,Xia Jinwen1,Zhao Jianmin12

Affiliation:

1. Jiangxi Provincial Engineering Research Center of Seed-Breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang 330099, China

2. Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang 330029, China

Abstract

UAV multispectral technology is used to obtain leaf area index (LAI) and aboveground biomass (AGB) information on Cinnamomum camphora (C. camphora) and to diagnose the growth condition of Cinnamomum camphora dwarf forests in a timely and rapid manner, which helps improve the precision management of Cinnamomum camphora dwarf forests. Multispectral remote sensing images provide large-area plant spectral information, which can provide a detailed quantitative assessment of LAI, AGB and other plant physicochemical parameters. They are very effective tools for assessing and analyzing plant health. In this study, the Cinnamomum camphora dwarf forest in the red soil area of south China is taken as the research object. Remote sensing images of Cinnamomum camphora dwarf forest canopy are obtained by the multispectral camera of an unmanned aerial vehicle (UAV). Extreme gradient boosting (XGBoost), gradient boosting decision tree (GBDT), random forest (RF), radial basis function neural network (RBFNN) and support vector regression (SVR) algorithms are used to study the correlation and estimation accuracy between the original band reflectance, spectral indices and LAI and AGB of Cinnamomum camphora. The results of this study showed the following: (1) The accuracy of model estimation based on RF is significantly different for different model inputs, while the other four models have small differences. (2) The accuracy of the XGBoost-based LAI model was the highest; with original band reflectance as the model input, the R2 of the model test set was 0.862, and the RMSE was 0.390. (3) The accuracy of the XGBoost-based AGB model was the highest; with spectral indices as the model input, the R2 of the model test set was 0.929, and the RMSE was 587.746 kg·hm−2. (4) The XGBoost model was the best model for the LAI and AGB estimation of Cinnamomum camphora, which was followed by GBDT, RF, RFNN, and SVR. This research result can provide a theoretical basis for monitoring a Cinnamomum camphora dwarf forest based on UAV multispectral technology and a reference for rapidly estimating Cinnamomum camphora growth parameters.

Funder

National Natural Science Foundation of China

Natural Science Foundation Project of Jiangxi Province

Jiangxi province main discipline academic and technical leaders training plan youth project of China

Jiangxi Provincial Science and Technology Department Major Science and Technology Project of China

Jiangxi Forestry Bureau camphor tree research project of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3