A New Cross-Domain Motor Fault Diagnosis Method Based on Bimodal Inputs

Author:

Shang Qianming12,Jin Tianyao2,Chen Mingsheng12ORCID

Affiliation:

1. Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan 430063, China

2. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China

Abstract

Electric motors are indispensable electrical equipment in ships, with a wide range of applications. They can serve as auxiliary devices for propulsion, such as air compressors, anchor winches, and pumps, and are also used in propulsion systems; ensuring the safe and reliable operation of motors is crucial for ships. Existing deep learning methods typically target motors under a specific operating state and are susceptible to noise during feature extraction. To address these issues, this paper proposes a Resformer model based on bimodal input. First, vibration signals are transformed into time–frequency diagrams using continuous wavelet transform (CWT), and three-phase current signals are converted into Park vector modulus (PVM) signals through Park transformation. The time–frequency diagrams and PVM signals are then aligned in the time sequence to be used as bimodal input samples. The analysis of time–frequency images and PVM signals indicates that the same fault condition under different loads but at the same speed exhibits certain similarities. Therefore, data from the same fault condition under different loads but at the same speed are combined for cross-domain motor fault diagnosis. The proposed Resformer model combines the powerful spatial feature extraction capabilities of the Swin-t model with the excellent fine feature extraction and efficient training performance of the ResNet model. Experimental results show that the Resformer model can effectively diagnose cross-domain motor faults and maintains performance even under different noise conditions. Compared with single-modal models (VGG-11, ResNet, ResNeXt, and Swin-t), dual-modal models (MLP-Transformer and LSTM-Transformer), and other large models (Swin-s, Swin-b, and VGG-19), the Resformer model exhibits superior overall performance. This validates the method’s effectiveness and accuracy in the intelligent recognition of common cross-domain motor faults.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3