A Comprehensive Review of Floating Solar Plants and Potentials for Offshore Applications

Author:

Huang Guozhen1,Tang Yichang23,Chen Xi1,Chen Mingsheng23ORCID,Jiang Yanlin23

Affiliation:

1. Research and Development Centre, Xiamen Mibet New Energy Co., Ltd., Xiamen 361022, China

2. Key Laboratory of High Performance Ship Technology (Wuhan University of Technology), Ministry of Education, Wuhan 430063, China

3. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China

Abstract

Fossil fuel consumption has progressively increased alongside global population growth, representing the predominant energy consumption pattern for humanity. Unfortunately, this persistent reliance on fossil fuels has resulted in a substantial surge in pollution emissions, exerting a detrimental influence on the delicate ecological balance. Therefore, it is imperative to find new renewable energy sources to replace fossil fuels. Solar energy is a clean energy source and has become the most preferred option for human day-to-day needs. Since the construction of the world’s first floating photovoltaic power station, humanity has been continuously advancing the technology of power generation by floating photovoltaics. This review comprehensively elucidates the progression of offshore photovoltaic technology and illustrates the composition of the floating photovoltaic system. Each section meticulously contrasts the advantages and drawbacks of various photovoltaic systems. In addition, an in-depth analysis of the offshore photovoltaic application potentials is conducted based on fundamental theories, thereby offering valuable insights for future research. Finally, an encompassing summary of the potential challenges associated with deep-sea floating photovoltaic systems is presented.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3