Next in Surgical Data Science: Autonomous Non-Technical Skill Assessment in Minimally Invasive Surgery Training

Author:

Nagyné Elek RenátaORCID,Haidegger TamásORCID

Abstract

Background: It is well understood that surgical skills largely define patient outcomes both in Minimally Invasive Surgery (MIS) and Robot-Assisted MIS (RAMIS). Non-technical surgical skills, including stress and distraction resilience, decision-making and situation awareness also contribute significantly. Autonomous, technologically supported objective skill assessment can be efficient tools to improve patient outcomes without the need to involve expert surgeon reviewers. However, autonomous non-technical skill assessments are unstandardized and open for more research. Recently, Surgical Data Science (SDS) has become able to improve the quality of interventional healthcare with big data and data processing techniques (capture, organization, analysis and modeling of data). SDS techniques can also help to achieve autonomous non-technical surgical skill assessments. Methods: An MIS training experiment is introduced to autonomously assess non-technical skills and to analyse the workload based on sensory data (video image and force) and a self-rating questionnaire (SURG-TLX). A sensorized surgical skill training phantom and adjacent training workflow were designed to simulate a complicated Laparoscopic Cholecystectomy task; the dissection of the cholecyst’s peritonial layer and the safe clip application on the cystic artery in an uncomfortable environment. A total of 20 training sessions were recorded from 7 subjects (3 non-medicals, 2 residents, 1 expert surgeon and 1 expert MIS surgeon). Workload and learning curves were studied via SURG-TLX. For autonomous non-technical skill assessment, video image data with tracked instruments based on Channel and Spatial Reliability Tracker (CSRT) and force data were utilized. An autonomous time series classification was achieved by a Fully Convolutional Neural Network (FCN), where the class labels were provided by SURG-TLX. Results: With unpaired t-tests, significant differences were found between the two groups (medical professionals and control) in certain workload components (mental demands, physical demands, and situational stress, p<0.0001, 95% confidence interval, p<0.05 for task complexity). With paired t-tests, the learning curves of the trials were also studied; the task complexity resulted in a significant difference between the first and the second trials. Autonomous non-technical skill classification was based on the FCN by applying the tool trajectories and force data as input. This resulted in a high accuracy (85%) on temporal demands classification based on the z component of the used forces and 75% accuracy for classifying mental demands/situational stress with the x component of the used forces validated with Leave One Out Cross-Validation. Conclusions: Non-technical skills and workload components can be classified autonomously based on measured training data. SDS can be effective via automated non-technical skill assessment.

Funder

Austrian Center for Medical Innovation and Technology

National Research, Development and Innovation Fund of Hungary

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3