Assessment of Surgeons’ Stress Levels with Digital Sensors during Robot-Assisted Surgery: An Experimental Study

Author:

Takács Kristóf1ORCID,Lukács Eszter1ORCID,Levendovics Renáta123ORCID,Pekli Damján4ORCID,Szijártó Attila4ORCID,Haidegger Tamás13ORCID

Affiliation:

1. Antal Bejczy Center for Intelligent Robotics (IROB), University Research and Innovation Center (EKIK), Óbuda University, 1034 Budapest, Hungary

2. John von Neumann Faculty of Informatics (NIK), Óbuda University, 1034 Budapest, Hungary

3. Austrian Center for Medical Innovation and Technology (ACMIT), 2700 Wiener Neustadt, Austria

4. Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary

Abstract

Robot-Assisted Minimally Invasive Surgery (RAMIS) marks a paradigm shift in surgical procedures, enhancing precision and ergonomics. Concurrently it introduces complex stress dynamics and ergonomic challenges regarding the human–robot interface and interaction. This study explores the stress-related aspects of RAMIS, using the da Vinci XI Surgical System and the Sea Spikes model as a standard skill training phantom to establish a link between technological advancement and human factors in RAMIS environments. By employing different physiological and kinematic sensors for heart rate variability, hand movement tracking, and posture analysis, this research aims to develop a framework for quantifying the stress and ergonomic loads applied to surgeons. Preliminary findings reveal significant correlations between stress levels and several of the skill-related metrics measured by external sensors or the SURG-TLX questionnaire. Furthermore, early analysis of this preliminary dataset suggests the potential benefits of applying machine learning for surgeon skill classification and stress analysis. This paper presents the initial findings, identified correlations, and the lessons learned from the clinical setup, aiming to lay down the cornerstones for wider studies in the fields of clinical situation awareness and attention computing.

Funder

Distinguished Researcher program of Óbuda University

Publisher

MDPI AG

Reference34 articles.

1. Robot-assisted minimally invasive surgery—Surgical robotics in the data age;Haidegger;Proc. IEEE,2022

2. Marcelo, H., Ang, O.K., and Siciliano, B. (2022). Encyclopedia of Robotics, Springer.

3. Image-guided interventional robotics: Lost in translation?;Fichtinger;Proc. IEEE,2022

4. Nagy, T.D., and Haidegger, T. (2022). Performance and capability assessment in surgical subtask automation. Sensors, 22.

5. Jaksa, L., Azamatov, B., Nazenova, G., Alontseva, D., and Tamas, H. (2023). State of the art in Medical Additive Manufacturing. Acta Polytech. Hung., 20.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3