Fault Diagnosis of a Rolling Bearing Based on Adaptive Sparest Narrow-Band Decomposition and RefinedComposite Multiscale Dispersion Entropy

Author:

Luo SongrongORCID,Yang WenxianORCID,Luo Youxin

Abstract

Condition monitoring and fault diagnosis of a rolling bearing is crucial to ensure the reliability and safety of a mechanical system. When local faults happen in a rolling bearing, the complexity of intrinsic oscillations of the vibration signals will change. Refined composite multiscale dispersion entropy (RCMDE) can quantify the complexity of time series quickly and effectively. To measure the complexity of intrinsic oscillations at different time scales, adaptive sparest narrow-band decomposition (ASNBD), as an improved adaptive sparest time frequency analysis (ASTFA), is introduced in this paper. Integrated, the ASNBD and RCMDE, a novel-fault diagnosis-model is proposed for a rolling bearing. Firstly, a vibration signal collected is decomposed into a number of intrinsic narrow-band components (INBCs) by the ASNBD to present the intrinsic modes of a vibration signal, and several relevant INBCs are prepared for feature extraction. Secondly, the RCMDE values are calculated as nonlinear measures to reveal the hidden fault-sensitive information. Thirdly, a basic Multi-Class Support Vector Machine (multiSVM) serves as a classifier to automatically identify the fault type and fault location. Finally, experimental analysis and comparison are made to verify the effectiveness and superiority of the proposed model. The results show that the RCMDE value lead to a larger difference between various states and the proposed model can achieve reliable and accurate fault diagnosis for a rolling bearing.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3