Environmental Effects of Technological Improvements in Polysilicon Photovoltaic Systems in China—A Life Cycle Assessment

Author:

Jia Haicheng,Liang Ling,Xie Jiqing,Zhang Jianyun

Abstract

Due to increasing pollution and the overexploitation of traditional energy, there is both an environmental and a resource threat to sustainable development. China’s government prioritizes the optimization of resource structures with photovoltaic industrial support policies to address the potential hazards of traditionally highly polluting energy resources. However, applying green energy resources is not a panacea for solving existing industrial pollution as environmental problems cannot be solved with the level of optimized energy types. Instead, it is necessary to further explore the potential carbon emissions from clean energy resources. Therefore, we construct a polysilicon PV system’s whole life cycle carbon emission model by applying the LCA method and further building the emission coefficient model. More specifically, we divided the system’s carbon emissions into six components and calculated each part separately. In addition, we further applied the case analysis method. We analyzed the carbon emissions of the 280 MW solar cell production project of a leading global PV module company in China. The research results indicated that polysilicon companies should proactively develop advanced production technologies to upgrade energy-saving and environmental safety measures to reduce resource and energy consumption from raw materials in the final disposal process.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3