Advancements in Photovoltaic Cell Materials: Silicon, Organic, and Perovskite Solar Cells

Author:

Machín Abniel1ORCID,Márquez Francisco2ORCID

Affiliation:

1. Environmental Catalysis Research Laboratory, Division of Natural Sciences and Technology, Universidad Ana G. Méndez-Cupey Campus, San Juan, PR 00926, USA

2. Nanomaterials Research Group, Department of Natural Sciences and Technology, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA

Abstract

The evolution of photovoltaic cells is intrinsically linked to advancements in the materials from which they are fabricated. This review paper provides an in-depth analysis of the latest developments in silicon-based, organic, and perovskite solar cells, which are at the forefront of photovoltaic research. We scrutinize the unique characteristics, advantages, and limitations of each material class, emphasizing their contributions to efficiency, stability, and commercial viability. Silicon-based cells are explored for their enduring relevance and recent innovations in crystalline structures. Organic photovoltaic cells are examined for their flexibility and potential for low-cost production, while perovskites are highlighted for their remarkable efficiency gains and ease of fabrication. The paper also addresses the challenges of material stability, scalability, and environmental impact, offering a balanced perspective on the current state and future potential of these material technologies.

Funder

NSF Center for the Advancement of Wearable Technologies-CAWT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3