Sequential Bioleaching of Pyritic Tailings and Ferric Leaching of Nonferrous Slags as a Method for Metal Recovery from Mining and Metallurgical Wastes

Author:

Fomchenko NatalyaORCID,Muravyov MaximORCID

Abstract

In this work, we proposed a method for biohydrometallurgical processing of mining (old pyritic flotation tailings) and metallurgical (slag) wastes to recover gold and other nonferrous metals. Since this processing allows the removal of toxic metals or at least decreases their content in the solids, this approach may reduce the negative environmental impacts of such waste. The proposed process was based on pyritic tailings’ bioleaching to recover metals and produce leach liquor containing a strong oxidizing agent (ferric sulfate) to dissolve nonferrous metal from slag. This approach also allows us to increase concentrations of nonferrous metals in the pregnant leach solution after pyritic waste bioleaching to allow efficient extraction. The old pyritic tailings were previously leached with 0.25% sulfuric acid for 10 min to remove soluble metal sulfates. As a result, 36% of copper and 35% of zinc were extracted. After 12 days of bioleaching with a microbial consortium containing Leptospirillum spp., Sulfobacillus spp., Ferroplasma spp., and Acidithiobacillus spp. at 35 °C, the total recovery of metals from pyritic tailings reached 68% for copper and 77% for zinc; and subsequent cyanidation allowed 92% recovery of gold. Ferric leaching of two types of slag at 70 °C with the leachate obtained during bioleaching of the tailings and containing 15 g/L of Fe3+ allowed 88.9 and 43.4% recovery of copper and zinc, respectively, from copper slag within 150 min. Meanwhile, 91.5% of copper, 84.1% of nickel, and 70.2% of cobalt were extracted from copper–nickel slag within 120 min under the same conditions.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference62 articles.

1. Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery;Wills,2015

2. Sustainable Construction Materials: Copper Slag;Obe,2017

3. Designing mine tailings for better environmental, social and economic outcomes: a review of alternative approaches

4. Characterization of mining tailings in México for the possible recovery of strategic elements

5. Man-made gold-bearing mineral raw materials of the southern Urals: Nature, composition and prospects for use;Mustafin;Problemy Mineralogii, Petrografii i Metallogenii. Nauchnye Chteniya Pamyati P. N. Chirvinskogo.,2019

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3