Author:
Zhou Nan,Cui Xiulong,Han Changhao,Yang Zhou
Abstract
The safety of power batteries has received more and more attention in promoting electric vehicles. The external short circuit is particularly prominent as an abnormal and harmful event of a battery, and the exploration of in-situ low-cost detection technology for such an event is the starting point of this paper. By building an experimental bench that could detect the external short circuit of the battery and obtain the acoustic, electrode, and temperature responses, the resulting acoustic analysis would establish an internal connection with the electrode and temperature measurement when the external short circuit occurs. The respective acoustic response characteristics of different initial battery states of charge were analyzed by selecting appropriate acoustic characteristic parameters in the time and frequency domains. The acoustic measurement could represent the battery abnormality synchronously like the electrode measurement, and the results of the damage and rearrangement of the internal of the battery are easy to characterize through a moderate amplification of the acoustic response. The different initial state of charge (SOC) state reflects noticeable differences in the acoustic characteristics. Therefore, it is considered that the acoustic emission technology might have potential battery condition assessment capabilities and be a tool for in-situ battery fault diagnosis.
Funder
National Natural Science Foundation of China
Control and Safety Key Laboratory of Sichuan Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献