Detection and Analysis of Abnormal High-Current Discharge of Cylindrical Lithium-Ion Battery Based on Acoustic Characteristics Research

Author:

Zhou Nan123,Wang Kunbai1,Shi Xiang14,Chen Zeyu1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

2. Key Laboratory of Vibration and Control of Aero-Propulsion System, Northeastern University, Shenyang 110819, China

3. Key Laboratory of Advanced Manufacture Technology for Automobile Parts, Chongqing University of Technology, Chongqing 400054, China

4. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The improvement of battery management systems (BMSs) requires the incorporation of advanced battery status detection technologies to facilitate early warnings of abnormal conditions. In this study, acoustic data from batteries under two discharge rates, 0.5 C and 3 C, were collected using a specially designed battery acoustic test system. By analyzing selected acoustic parameters in the time domain, the acoustic signals exhibited noticeable differences with the change in discharge current, highlighting the potential of acoustic signals for current anomaly detection. In the frequency domain analysis, distinct variations in the frequency domain parameters of the acoustic response signal were observed at different discharge currents. The identification of acoustic characteristic parameters demonstrates a robust capability to detect short-term high-current discharges, which reflects the sensitivity of the battery’s internal structure to varying operational stresses. Acoustic emission (AE) technology, coupled with electrode measurements, effectively tracks unusually high discharge currents. The acoustic signals show a clear correlation with discharge currents, indicating that selecting key acoustic parameters can reveal the battery structure’s response to high currents. This approach could serve as a crucial diagnostic tool for identifying battery abnormalities.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

the Opening Foundation of Key Laboratory of Advanced Manufacture Technology for Automobile Parts, Ministry of Education

the Liaoning Provincial Science and Technology planned project

Chinese National Natural Science Foundation

Liaoning Provincial Science and Technology planned project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3