Prediction of Electric Buses Energy Consumption from Trip Parameters Using Deep Learning

Author:

Pamuła TeresaORCID,Pamuła Danuta

Abstract

The energy demand of electric buses (EBs) is a very important parameter that should be considered by transport companies when introducing electric buses into the urban bus fleet. This article proposes a novel deep-learning-based model for predicting energy consumption of an electric bus traveling in an urban area. The model addresses two important issues: accuracy and cost of prediction. The aim of the research was to develop the deep-learning-based prediction model, which requires only the data readily available to bus fleet operators, such as location of the bus stops (coordinates, altitude), route traveled, schedule, travel time between stops, and to find the most suitable type and configuration of neural network to evaluate the model. The developed prediction model was assessed with different types of deep neural networks using real data collected for several bus lines in a medium-sized city in Poland. Conducted research has shown that the deep learning network with autoencoders (DLNA) neural network allows for the most accurate energy consumption estimation of 93%. The proposed model can be used by public transport companies to plan driving schedules and energy management when introducing electric buses.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. European Green Dealhttps://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en

2. Electric Buses Arrive on Time. Marketplace, Economic, Technology, Environmental and Policy Perspectives for Fully Electric Buses in the EU. Transport and Environmenthttps://www.transportenvironment.org/sites/te/files/publications/Electric%20buses%20arrive%20on%20time.pdf

3. Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies

4. A GRASP Approach for Solving Large-Scale Electric Bus Scheduling Problems

5. Optimal Charging Schedule Planning for Electric Buses Using Aggregated Day-Ahead Auction Bids

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3