A Comparison between Analog Ensemble and Convolutional Neural Network Empirical-Statistical Downscaling Techniques for Reconstructing High-Resolution Near-Surface Wind

Author:

Rozoff Christopher M.ORCID,Alessandrini StefanoORCID

Abstract

Empirical-statistical downscaling (ESD) can be a computationally advantageous alternative to dynamical downscaling in representing a high-resolution regional climate. Two distinct strategies of ESD are employed here to reconstruct near-surface winds in a region of rugged terrain. ESD is used to reconstruct the innermost grid of a multiply nested mesoscale model framework for regional climate downscaling. An analog ensemble (AnEn) and a convolutional neural network (CNN) are compared in their ability to represent near-surface winds in the innermost grid in lieu of dynamical downscaling. Downscaling for a 30 year climatology of 10 m April winds is performed for southern MO, USA. Five years of training suffices for producing low mean absolute error and bias for both ESD techniques. However, root-mean-squared error is not significantly reduced by either scheme. In the case of the AnEn, this is due to a minority of cases not producing a satisfactory representation of high-resolution wind, accentuating the root-mean-squared error in spite of a small mean absolute error. Homogeneous comparison shows that the AnEn produces smaller errors than the CNN. Though further tuning may improve results, the ESD techniques considered here show that they can produce a reliable, computationally inexpensive method for reconstructing high-resolution 10 m winds over complex terrain.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3