Abstract
The Analogue Ensemble (AnEn) method enables the reconstruction of meteorological observations or deterministic predictions for a certain variable and station by using data from the same station or from other nearby stations. However, depending on the dimension and granularity of the historical datasets used for the reconstruction, this method may be computationally very demanding even if parallelization is used. In this work, the classical AnEn method is modified so that analogues are determined using K-means clustering. The proposed combined approach allows the use of several predictors in a dependent or independent way. As a result of the flexibility and adaptability of this new approach, it is necessary to define several parameters and algorithmic options. The effects of the critical parameters and main options were tested on a large dataset from real-world meteorological stations. The results show that adequate monitoring and tuning of the new method allows for a considerable improvement of the computational performance of the reconstruction task while keeping the accuracy of the results. Compared to the classical AnEn method, the proposed variant is at least 15-times faster when processing is serial. Both approaches benefit from parallel processing, with the K-means variant also being always faster than the classic method under that execution regime (albeit its performance advantage diminishes as more CPU threads are used).
Subject
Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献