Mitigating Generation Schedule Deviation of Wind Farm Using Battery Energy Storage System

Author:

Sewnet AsmamawORCID,Khan Baseem,Gidey Issaias,Mahela Om PrakashORCID,El-Shahat AdelORCID,Abdelaziz Almoataz Y.ORCID

Abstract

Meeting the generation schedule in a wind farm is a major issue. This work utilized battery energy storage systems (BESS) integrated wind farms (WF) to supply energy to the power grid at a pre-determined generation schedule, which was set previously based on the meteorological forecast and BESS characteristics. This study proposed the integration of two independently controlled BESS into the WF to balance stochastic power deviations between actual wind power and scheduled power. By utilizing linear optimization and solving in MATLAB, simulation models of the operations of BESS-integrated WF have been developed. The technical performance of the BESS-integrated wind farm on meeting the generation schedule, along with the cost benefits and profit attributed to the BESS, is therefore measured by a series of indices. The simulation on a practical wind farm, i.e., Adama-I WF, Ethiopia shows that even though it depends on the type of state exchanging strategy adopted, the developed methodology of integrating BESS into the WF is effective and BESS profits can totally cover the cost. Technical and economic indices that resulted from the integration of two separate BESSs with independent control were compared with indices that resulted from integrating a single BESS. Simulation results show that operating the wind farm with two independently controlled batteries has better performance as compared to operating with a single battery. It also shows that the discharging and charging state exchanging approaches of the BESS (in the case of two battery integration), as well as the number of batteries integrated into the wind farm, have significant impacts on the performance of the WF integrated with BESS.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference41 articles.

1. World Energy Outlook 2011https://www.iea.org/reports/world-energy-outlook-2011

2. Study on Multi-scale Unit Commitment Optimization in the Wind-Coal Intensive Power System

3. The Ethiopian Energy Sector–Investment Opportunitieshttps://www.developingmarkets.com/sites/default/files/AA%20Eth%20Energy%20Sector%20Presentation%20London.pdf

4. Base-Load Cycling on a System With Significant Wind Penetration

5. Grid Integration of Wind Energy Conversion Systems;Heier,2006

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3