Optimized Battery Capacity Allocation Method for Wind Farms with Dual Operating Conditions

Author:

Duanmu Chenrui1,Shi Linjun1,Jian Deping2,Ding Renshan2,Li Yang1,Wu Feng1

Affiliation:

1. School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China

2. Yalong River Hydropower Development Company Ltd., Chengdu 610051, China

Abstract

In order to solve the problems of wind power output volatility and wind power participation in frequency regulation, a method for optimizing the capacity allocation of wind farm storage batteries based on the dual grouping strategy and considering the simultaneous execution of the dual conditions of energy storage in fluctuation smoothing and primary frequency regulation is proposed. Firstly, a two-layer model is established to optimize the capacity allocation under dual operating conditions, i.e., the planning layer takes into account the lifetime, cost, and benefit, and the operation layer considers the wind turbine reserve backup and storage control to participate in the primary frequency regulation in a cooperative manner. Then, the dual battery pack operation strategy is embedded with the variational modal decomposition method to determine the charging and discharging operation strategy of energy storage after considering the grid-optimized reference power. An improved particle swarm algorithm with inverse learning pre-optimization combined with variational crossover post-optimization is embedded in the GUROBI computation to obtain the optimal battery storage capacity allocation scheme. Finally, the superiority of the model proposed in this paper in terms of improving energy storage utilization, service life, and economic efficiency as well as reducing wind power load shedding is verified by comparing it with a single execution working condition scenario and traditional battery control strategy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3