Distributionally Robust Joint Chance-Constrained Dispatch for Electricity–Gas–Heat Integrated Energy System Considering Wind Uncertainty

Author:

Liu Hui,Fan ZhenggangORCID,Xie HaiminORCID,Wang Ni

Abstract

With the increasing penetration of wind power, the uncertainty associated with it brings more challenges to the operation of the integrated energy system (IES), especially the power subsystem. However, the typical strategies to deal with wind power uncertainty have poor performance in balancing economy and robustness. Therefore, this paper proposes a distributionally robust joint chance-constrained dispatch (DR-JCCD) model to coordinate the economy and robustness of the IES with uncertain wind power. The optimization dispatch model is formulated as a two-stage problem to minimize both the day-ahead and the real-time operation costs. Moreover, the ambiguity set is generated using Wasserstein distance, and the joint chance constraints are used to ensure that the safety constraints (e.g., ramping limit and transmission limit) can be satisfied jointly under the worst-case probability distribution of wind power. The model is remodeled as a mixed-integer tractable programming issue, which can be solved efficiently by ready-made solvers using linear decision rules and linearization methods. Case studies on an electricity–gas–heat regional integrated system, which includes a modified IEEE 24-bus system, 20 natural gas-nodes, and 6 heat-node system, are investigated for verification. Numerical simulation results demonstrate that the proposed DR-JCCD approach effectively coordinates the economy and robustness of IES and can offer operators a reasonable energy management scheme with an acceptable risk level.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3