Wasserstein‐metric‐based distributionally robust optimization method for unit commitment considering wind turbine uncertainty

Author:

Chen Gengrui1ORCID,Qi Donglian23,Yan Yunfeng3,Chen Yulin2,Wang Yaxin3,Mei Jingcheng3

Affiliation:

1. Polytechnic Institute Zhejiang University Hangzhou People's Republic of China

2. Hainan Institute of Zhejiang University Sanya People's Republic of China

3. College of Electrical Engineering Zhejiang University Hangzhou People's Republic of China

Abstract

AbstractThe penetration of wind turbines in the power grid is increasing rapidly. Still, the wind turbine output power has uncertainty, leading to poor grid reliability, affecting the grid's dispatching plan, and increasing the total cost. Thus, a distributionally robust optimization method for thermal power unit commitment considering the uncertainty of wind power is proposed. For this method, energy storage and interruptible load are added to simulate increasingly complex electricity consumption scenarios. Furthermore, the amount of load cutting reflects the satisfaction level of electricity consumption on the user side. Based on Wasserstein metric, an ambiguity set is established to reflect the probabilistic distribution information of the wind power uncertainty. An ambiguity set preprocessing method is proposed to depict the probability distribution of ambiguity set more clearly, to minimize the operation cost under the condition that the uncertainty of wind turbine output power obeys the extreme probabilistic distribution of the ambiguity set. The test case in a modified version of the IEEE 6‐bus system shows that the proposed method can flexibly adjust the robustness and economy of optimization decisions by controlling the sample size and the confidence of Wasserstein ambiguity set radius. In addition, the proposed ambiguity set preprocessing method can obtain more economical dispatching decisions with a smaller sample size.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3