Tiny Vehicle Detection for Mid-to-High Altitude UAV Images Based on Visual Attention and Spatial-Temporal Information

Author:

Yu Ruonan,Li Hongguang,Jiang Yalong,Zhang Baochang,Wang YufengORCID

Abstract

Mid-to-high altitude Unmanned Aerial Vehicle (UAV) imagery can provide important remote sensing information between satellite and low altitude platforms, and vehicle detection in mid-to-high altitude UAV images plays a crucial role in land monitoring and disaster relief. However, the high background complexity of images and limited pixels of objects challenge the performance of tiny vehicle detection. Traditional methods suffer from poor adaptation ability to complex backgrounds, while deep neural networks (DNNs) have inherent defects in feature extraction of tiny objects with finite pixels. To address the issue above, this paper puts forward a vehicle detection method combining the DNNs-based and traditional methods for mid-to-high altitude UAV images. We first employ the deep segmentation network to exploit the co-occurrence of the road and vehicles, then detect tiny vehicles based on visual attention mechanism with spatial-temporal constraint information. Experimental results show that the proposed method achieves effective detection of tiny vehicles in complex backgrounds. In addition, ablation experiments are performed to inspect the effectiveness of each component, and comparative experiments on tinier objects are carried out to prove the superior generalization performance of our method in detecting vehicles with a limited size of 5 × 5 pixels or less.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3