SREDet: Semantic-Driven Rotational Feature Enhancement for Oriented Object Detection in Remote Sensing Images

Author:

Zhang Zehao1ORCID,Wang Chenhan1,Zhang Huayu1,Qi Dacheng1ORCID,Liu Qingyi2,Wang Yufeng2ORCID,Ding Wenrui2

Affiliation:

1. School of Electronic Information Engineering, Beihang University, Beijing 100191, China

2. Institute of Unmanned System, Beihang University, Beijing 100191, China

Abstract

Significant progress has been achieved in the field of oriented object detection (OOD) in recent years. Compared to natural images, objects in remote sensing images exhibit characteristics of dense arrangement and arbitrary orientation while also containing a large amount of background information. Feature extraction in OOD becomes more challenging due to the diversity of object orientations. In this paper, we propose a semantic-driven rotational feature enhancement method, termed SREDet, to fully leverage the joint semantic and spatial information of oriented objects in the remote sensing images. We first construct a multi-rotation feature pyramid network (MRFPN), which leverages a fusion of multi-angle and multiscale feature maps to enhance the capability to extract features from different orientations. Then, considering feature confusion and contamination caused by the dense arrangement of objects and background interference, we present a semantic-driven feature enhancement module (SFEM), which decouples features in the spatial domain to separately enhance the features of objects and weaken those of backgrounds. Furthermore, we introduce an error source evaluation metric for rotated object detection to further analyze detection errors and indicate the effectiveness of our method. Extensive experiments demonstrate that our SREDet method achieves superior performance on two commonly used remote sensing object detection datasets (i.e., DOTA and HRSC2016).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3