Increased Expression of TLR4 in Circulating CD4+T Cells in Patients with Allergic Conjunctivitis and In Vitro Attenuation of Th2 Inflammatory Response by Alpha-MSH

Author:

Nieto Jane E.,Casanova Israel,Serna-Ojeda Juan Carlos,Graue-Hernández Enrique O.,Quintana Guillermo,Salazar Alberto,Jiménez-Martinez María C.ORCID

Abstract

Ocular allergic diseases are frequently seen in ophthalmological clinical practice. Immunological damage is mediated by a local Th2 inflammatory microenvironment, accompanied by changes in circulating cell subsets, with more effector cells and fewer T regulatory cells (Tregs). This study aimed to evaluate the involvement of toll-like receptor 4 (TLR4) and α-melanocyte stimulating hormone (α-MSH) in the immune regulation associated with perennial allergic conjunctivitis (PAC). We performed an Ag-specific stimulation during 72 h of culturing with or without lipopolysaccharide (LPS) or α-MSH in peripheral blood mononuclear cells (PBMC), analyzing the cell subsets and cytokines induced by the stimuli. We also determined α-MSH in tear samples from healthy donors (HD) or PAC patients. Our findings demonstrate an immunological dysregulation characterized by an increased frequency of CD4+TLR4+ in the PBMC of patients with PAC, compared to HD. Most of these CD4+TLR4+ cells were also CD25+, and when α-MSH was added to the culture, the percentage of CD4+CD25+FoxP3+ increased significantly, while the percentage of CD69+ cells and cytokines IL-4 and IL-6 were significantly decreased. In tears, we found an increased concentration of α-MSH in PAC patients, compared with HD. These findings indicate a novel mechanism involved in controlling ocular allergic diseases, in which α-MSH diminishes the concentration of IL-6 and IL-4, restoring the frequency of Tregs and down-regulating CD4 activation. Moreover, we demonstrated the involvement of CD4+TLR4+ cells as an effector cell subset in ocular allergy.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3