Effects of Human Endothelial Progenitor Cell and Its Conditioned Medium on Oocyte Development and Subsequent Embryo Development

Author:

Lee Seok Hee

Abstract

Human endothelial progenitor cells (EPCs) secrete numerous growth factors, and they have been applied to regenerative medicine for their roles in angiogenesis as well as neovascularization. Angiogenesis is one of the essential factors for the maturation of ovarian follicles; however, the physiological function of EPCs or their derivatives on in vitro culture systems has not been fully understood. The aim of this study was to evaluate the effectiveness of EPCs and their conditioned medium (EPC-CM) on oocyte development and subsequent embryo development. In the results, the oocyte development and subsequent embryo development were significantly improved in EPCs and the EPC-CM group. In addition, markedly increased levels of growth factors/cytokines, such as basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin growth factor-1 (IGF-1), interleukin-10 (IL-10), and epidermal growth factor (EGF), were observed in medium from the EPC-CM group. Additionally, EPC-CM after in vitro maturation (IVM) had significantly decreased reactive oxygen species (ROS) levels compared to those of other groups. Transcriptional levels of growth factor receptor-related genes (FGFR2, IGF1R) and anti-apoptotic-related gene (BCL2) were significantly upregulated in cumulus cells/oocytes from the EPC-CM group compared with those from the control. Furthermore, the expression levels of cumulus expansion-related genes (PTGS2, TNFAIP6, HAS2) and oocyte-maturation-related factors (GDF9, BMP15) were significantly enhanced in the EPC-CM group. Consequently, the present study provides the first evidence that EPC-CM contains several essential growth factors for oocyte development by regulating genes involved in oocyte maturation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3