Dimethyloxalylglycine Attenuates Steroid-Associated Endothelial Progenitor Cell Impairment and Osteonecrosis of the Femoral Head by Regulating the HIF-1α Signaling Pathway

Author:

Shao Wenkai1ORCID,Li Zilin1,Wang Bo2,Gong Song1,Wang Ping1,Song Beite1,Chen Zhixiang1,Feng Yong1

Affiliation:

1. Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

2. Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Abstract

Endothelial impairment and dysfunction are closely related to the pathogenesis of steroid-associated osteonecrosis of the femoral head (SONFH). Recent studies have showed that hypoxia inducible factor-1α (HIF-1α) plays a crucial role in endothelial homeostasis maintenance. Dimethyloxalylglycine (DMOG) could suppress HIF-1 degradation and result in nucleus stabilization by repressing prolyl hydroxylase domain (PHD) enzymatic activity. Our results showed that methylprednisolone (MPS) remarkably undermined biological function of endothelial progenitor cells (EPC) by inhibiting colony formation, migration, angiogenesis, and stimulating senescence of EPCs, while DMOG treatment alleviated these effects by promoting HIF-1α signaling pathway, as evidenced by senescence-associated β-galactosidase (SA-β-Gal) staining, colony-forming unit, matrigel tube formation, and transwell assays. The levels of proteins related to angiogenesis were determined by ELISA and Western blotting. In addition, active HIF-1α bolstered the targeting and homing of endogenous EPCs to the injured endothelium in the femoral head. Histopathologically, our in vivo study showed that DMOG not only alleviated glucocorticoid-induced osteonecrosis but also promoted angiogenesis and osteogenesis in the femoral head as detected by microcomputed tomography (Micro-CT) analysis and histological staining of OCN, TRAP, and Factor Ⅷ. However, all of these effects were impaired by an HIF-1α inhibitor. These findings demonstrate that targeting HIF-1α in EPCs may constitute a novel therapeutic approach for the treatment of SONFH.

Funder

National Natural Science Foundation of China

Project of Scientific Research Plan of Wuhan Municipal Health Commission

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3