Consistent Effects of Canopy vs. Understory Nitrogen Addition on Soil Respiration and Net Ecosystem Production in Moso Bamboo Forests

Author:

Cai Chunju,Yang Zhihan,Liu Liang,Lai Yunsen,Lei Junjie,Fan Shaohui,Tang XiaoluORCID

Abstract

Nitrogen (N) deposition has been well documented to cause substantial impacts on ecosystem carbon cycling. However, the majority studies of stimulating N deposition by direct N addition to forest floor have neglected some key ecological processes in forest canopy (e.g., N retention and absorption) and might not fully represent realistic atmospheric N deposition and its effects on ecosystem carbon cycling. In this study, we stimulated both canopy and understory N deposition (50 and 100 kg N ha−1 year−1) with a local atmospheric NHx:NOy ratio of 2.08:1, aiming to assess whether canopy and understory N deposition had similar effects on soil respiration (RS) and net ecosystem production (NEP) in Moso bamboo forests. Results showed that RS, soil autotrophic (RA), and heterotrophic respiration (RH) were 2971 ± 597, 1472 ± 579, and 1499 ± 56 g CO2 m−2 year−1 for sites without N deposition (CN0), respectively. Canopy and understory N deposition did not significantly affect RS, RA, and RH, and the effects of canopy and understory N deposition on these soil fluxes were similar. NEP was 1940 ± 826 g CO2 m−2 year−1 for CN0, which was a carbon sink, indicating that Moso bamboo forest the potential to play an important role alleviating global climate change. Meanwhile, the effects of canopy and understory N deposition on NEP were similar. These findings did not support the previous predictions postulating that understory N deposition would overestimate the effects of N deposition on carbon cycling. However, due to the limitation of short duration of N deposition, an increase in the duration of N deposition manipulation is urgent and essential to enhance our understanding of the role of canopy processes in ecosystem carbon fluxes in the future.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for Platform of International Centre for Bamboo and Rattan

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3