Changing Relationship between Specific Leaf Area and Leaf Matter Dry Content of Moso Bamboo Phyllostachys pubescens syn. edulis (Poales: Poaceae) under the Stress of Pantana phyllostachysae (Lepidoptera: Lymantriidae)

Author:

Shen Wanling1,Xu Zhanghua123ORCID,Qin Na12,Chen Lingyan12,Yang Yuanyao1,Zhang Huafeng4,Yu Xier13,He Anqi1,Sun Lei12,Li Xia3

Affiliation:

1. College of Environment and Safety Engineering, Academy of Geography and Ecological Environment, Fuzhou University, Fuzhou 350108, China

2. Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education, The Academy of Digital China, Fuzhou University, Fuzhou 350108, China

3. Fujian Key Laboratory of Island Monitoring and Ecological Development, Fuzhou 350400, China

4. Xiamen Administration Center of Afforestation, Xiamen 361004, China

Abstract

The objective of this study was to deeply understand the adaptation mechanism of the functional traits of Moso bamboo Phyllostachys pubescens syn. edulis (Poales: Poaceae) leaves to the environment under different Pantana phyllostachysae Chao damage levels, analyzing the changes in the relationship between specific leaf area (SLA) and leaf dry matter content (LDMC). We combined different machine learning models (decision tree, RF, XGBoost, and CatBoost regression models), and used different canopy heights and different levels of infestation, to analyze the changes in the relationship between the two under different levels of infestation based on the results of the best estimation model. The results showed the following: (1) The SLA of Ph. pubescens showed a decreasing trend with the increase om insect pest degree, and LDMC showed an inverse trend. (2) The SLA of bamboo leaves was negatively correlated with the LDMC under different insect pest degrees; the correlation of the data under the healthy class was higher than that of other insect pest levels, and at the same time better than that of the full sample, which laterally confirmed the effect of insect pest stress on the functional traits of Ph. pubescens leaves. (3) When modeling under different infestation levels, the CatBoost model was used for heavy damage and the RF model was used for the rest of the cases; the decision tree regression model was used when modeling different canopy heights. The findings contribute certain insights into the nuanced responses and adaptive mechanisms of Ph. pubescens forests to environmental fluctuations. Moreover, these results furnish a robust scientific foundation, essential for ensuring the enduring sustainability of Ph. pubescens forest ecosystems.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Fujian Province Natural Science Foundation Project

Fujian Key Laboratory of Island Monitoring and Ecological Development

China Postdoctoral Science Foundation

Open Fund of Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization

Program for Innovative Research Team in Science and Technology in Fujian Province University

Open Fund of University Key Lab of Geomatics Technology, and Optimize Resources Utilization in Fujian Province

Research Project of Jinjiang Fuda Science and Education Park Development Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3