Investigating the Effect of Dust Accumulation on the Solar Reflectivity of Coating Materials for Cool Roof Applications

Author:

Saber Hamed H.ORCID,Hajiah Ali E.ORCID,Alshehri Saleh A.ORCID,Hussain Hussain J.

Abstract

Cool roofs use reflective materials or coatings to reflect a portion of the incident solar radiation. This results in a lowering the surface temperature of the cool roof compared to black roofs, and thus helps reduce the cooling energy loads during the summer season. The research reported in this paper was conducted to assess experimentally and numerically the performance of cool and black roofs that were subjected to the hot, humid and dusty climate of Jubail Industrial City (JIC). This paper focused on characterizing one of the important properties of reflective coating material (RCM), which is its solar reflectivity. In this study, the effect of dust/dirt accumulation on the solar reflectivity of the RCM was investigated at different exposure times to the natural weathering conditions of JIC. The test results showed that dust and dirt can significantly contribute in reducing the solar reflectivity of the RCM. As such, a number of cleaning processes were conducted on the surface of the RCM so as to increase its solar reflectivity. The effect of each cleaning process on the solar reflectivity of the RCM was investigated. Finally, this paper provides a test protocol and procedure for characterizing the dust concentration/intensity on the surfaces of the RCM and cleaning this material after different exposure times to a natural and polluted climate.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3