Abstract
This paper presents a new control strategy for reducing the switching losses produced by the use of high parasitic capacitance solar arrays in the sequential switching shunt regulator. Instead of dividing the solar array into equal sections, the proposed strategy is based on two different sections types, low-capacitance and high-capacitance ones. In order to reduce the switching losses and to maintain the original closed-loop response, a novel parallel power processing control strategy is implemented. With this new technique the low-capacitance sections are the only ones that switch at high frequency to regulate the bus while the high-capacitance sections are only connected or disconnected under high load power changes. In addition, the control closed loop delay associated to the time needed to charge the parasitic capacitance has been modelled and a controller modification is proposed to reduce AC performance degradation.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献