A Control Algorithm for Tapering Charging of Li-Ion Battery in Geostationary Satellites

Author:

Park Jeong-Eon1ORCID

Affiliation:

1. Satellite Technology Research and Development Division, Korea Aerospace Research Institute (KARI), Daejeon 34133, Republic of Korea

Abstract

Recently, as the satellite data service market has grown significantly, satellite demand has been rapidly increasing. Demand for geostationary satellites with weather observation, communication broadcasting, and GPS missions is also increasing. Completing the charging process of the Li-ion battery during the sun period is one of the main tasks of the electrical power system in geostationary satellites. In the case of the electrical power system of low Earth orbit satellites, the Li-ion battery is connected to the DC/DC converter output, and the charging process is completed through CV control. However, in the case of the regulated bus of the DET type, which is mainly used in the electrical power system of geostationary satellites, a Li-ion battery is connected to the input of the DC/DC converter. Therefore, a method other than the CV control of the DC/DC converter is required. This paper proposes a control algorithm for tapering charging of the Li-ion battery in the regulated bus of the DET type for Li-ion battery charge completion operation required by space-level design standards. In addition, the proposed control algorithm is verified through an experiment on a geostationary satellite’s ground electrical test platform. The experiment verified that it has a power conversion efficiency of 99.5% from the solar array to the battery. It has 21 tapering steps at the equinox and 17 tapering steps at the solstice.

Funder

Korea Aerospace Research Institute

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3