Abstract
Many regions in developing countries do not have any access to communication networks even though the number of devices connected through the Internet of Things (IoT) is increasing significantly. A small satellite platform could provide global network coverage in low Earth orbit to these remote locations at a low cost. This paper describes the overall mission architecture and the implementation of remote IoT using a 1U volume in 6U CubeSat platform named KITSUNE. In KITSUNE, one of the missions is to leverage IoT for building a network of remote ground sensor terminals (GST) in 11 mostly developing countries. This paper evaluates the capacity and coverage of a satellite-based IoT network for providing remote data-collection services to these countries. The amount of data that could be collected from the GSTs and forwarded accurately to the users determines the actual capacity of the Store and Forward (S&F) mission. Therefore, there are several proposed parameters to estimate this capacity in this study. In addition, these parameters are retrieved from the simulations, ground test results, and on-orbit observations with the KITSUNE satellite. The proposed IoT system, which is composed of the GSTs and IoT subsystem onboard KITSUNE satellite, is determined to be capable of providing valuable information from remote locations. In addition, the collected data are achieved and analyzed to monitor sensory data specific to each country, and it could help to generate prediction profiles as well.
Funder
JSPS Core-to-Core Program
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献